Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0620920230550102260
Experimental & Molecular Medicine
2023 Volume.55 No. 10 p.2260 ~ p.2268
Systemic antibiotics cause deterioration of emphysema associated with exaggerated inflammation and autophagy
Kim Na-Hyun

Choi Bo-Yun
Kim Eun-Sil
Kim Su-Jung
Hong Jeong-Yeon
Heo Sun-Hee
Ji Eun-Kyu
Kim Kyung-Gon
Yoo Hyun-Ju
Sul Woo-Jun
Lee Sei-Won
Abstract
The interaction between the microbial environment and the host is important for immune homeostasis. Recent research suggests that microbiota dysbiosis can be involved in respiratory diseases. Emphysema is a chronic inflammatory disease, but it is unclear whether dysbiosis caused by antibiotics can affect disease progression. Here, we tried to elucidate the effect of systemic antibiotics on smoking-exposed emphysema models. In this study, the antibiotic mixture caused more alveolar destruction and airspace expansion in the smoking group than in the smoking only or control groups. This emphysema aggravation as a result of antibiotic exposure was associated with increased levels of inflammatory cells, IL-6, IFN¥ã and protein concentrations in bronchoalveolar lavage fluid. Proteomics analysis indicated that autophagy could be involved in antibiotic-associated emphysema aggravation, and increased protein levels of LC3B, atg3, and atg7 were identified by Western blotting. In microbiome and metabolome analyses, the composition of the gut microbiota was different with smoking and antibiotic exposure, and the levels of short-chain fatty acids (SCFAs), including acetate and propionate, were reduced by antibiotic exposure. SCFA administration restored emphysema development with reduced inflammatory cells, IL-6, and IFN¥ã and decreased LC3B, atg3, and atg7 levels. In conclusion, antibiotics can aggravate emphysema, and inflammation and autophagy may be associated with this aggravation. This study provides important insight into the systemic impact of microbial dysbiosis and the therapeutic potential of utilizing the gut microbiota in emphysema.
KEYWORD
Cell death and immune response, Innate immunity, Respiratory tract diseases
FullTexts / Linksout information
Listed journal information